
A Modified Cuckoo Search Algorithm for Flow Shop
Scheduling Problem with Blocking

Hui Wang1, Wenjun Wang2, Hui Sun1, Changhe Li3
1School of Informati n Engineering, Nanchang Institute

of Technology, Nanchang 330099, China
huiwang@whu.edu.cn, sun_hui2006@163.com

 2School of Business Administration,Nanchang Institute of
Technology, Nanchang 330099, China

3School of Computer, China University of Geosciences,
Wuhan 430072, China

changhe.lw@gmail.com

Shahryar Rahnamayan4, Yong Liu5
 4Department of Electrical, Computer, and Software

Engineering, University of Ontario Institute of
Technology (UOIT), 2000 Simcoe Street North, Oshawa,

ON L1H 7K4, Canada
shahryar.rahnamayan@uoit.ca

5University of Aizu, Tsuruga, Ikki-machi, Aizu-
Wakamatsu, Fukushima 965-8580, Japan

yliu@u-aizu.ac.jp

Abstract—This paper presents a Modified Cuckoo Search
(MCS) algorithm for solving flow shop scheduling problem with
blocking to minimize the makespan. To handle the discrete
variables of the job scheduling problem, the smallest position
value (SPV) rule is used to convert continuous solutions into
discrete job permutations. The Nawaz-Enscore-Ham (NEH)
heuristic method is utilized for generating high quality initial
solutions. Moreover, two frequently used swap and insert
operators are employed for enhancing the local search. To verify
the performance of the proposed MCS algorithm, experiments
are conducted on Taillard's benchmark set. Results show that
MCS performs better than the standard CS and some previous
algorithms proposed in the literature.

Keywords—cuckoo search; flow shop scheduling; blocking;
makespan; optimization

I. INTRODUCTION
Production scheduling plays an important role in any

manufacturing system. With the rapid development of market,
good scheduling technologies can greatly improve the
production efficiency. In order to achieve a good position in
the market competition, more effective scheduling methods are
always needed. The flow shop scheduling problem with
blocking is one of the most popular scheduling problems,
which widely exists in the production system where processed
jobs are sometimes kept in the machines because of lacking
intermediate buffer storage [1], or storage is not allowed in
some stages of the manufacturing process because of
technological requirements [2–3]. Since there are no buffers
between machines, intermediate queues of jobs waiting in the
system for their subsequent operations are not allowed. A job
completed on a machine blocks this machine until the next
machine is available for processing. No job can surpass another,
because there is no buffer. It has been proved that the flow
shop scheduling problem with blocking is NP-hard, when there
are more than two machines [4].

In the past decades, the research on flow shop scheduling
problem with blocking has attracted much attention; and
different approaches have been proposed. McCormich et al. [5]

proposed a profile fitting method for the sequencing problems
in an assembly line with blocking to minimize cycle time.
Abadi et al. [6] used a heuristic approach to minimize the cycle
time in a blocking flow shop. Ronconi [7] developed a branch-
and-bound algorithm to minimize the makespan in a flow shop
with blocking. Grabowski and Pempera [3] developed two tabu
search methods, called TS and TS with multi-moves (TS+M),
respectively. The TS+M uses the multi-moves that consist in
performing several moves simultaneously in a single iteration
and guide the search process to more promising areas of the
solutions space. It allows the algorithm to achieve very good
solutions in a much shorter time.

Recently, some bio-inspired algorithms have been proposed
to solve this problem. Wang et al. [8] designed a novel hybrid
discrete differential evolution (HDDE) algorithm for blocking
flow shop scheduling problem. Individuals are represented as
discrete job permutations, and new mutation and crossover
operators are developed for this representation. So, HDDE can
directly work in the discrete domain. A local search based on
insert neighborhood structure is utilized to balance the
exploration and exploitation. Experimental results show that
the HDDE outperforms TS and TS+M. In [9], three hybrid
harmony search (HS) algorithms are used to solve the flow
shop scheduling with blocking to minimize the total flow time.
Unlike HDDE, it employs a largest position value (LPV) rule
to convert continuous harmony vectors into job permutations.
A new population initialization method based on a variant of
NEH heuristic is used. Liang et al. [2] presented a dynamic
multi-swam particle swarm optimizer (DMS-PSO) for solving
flow shop scheduling problem with blocking. To maintain
good global search ability, small swarms and a regrouping
scheduling were used. A specially designed local search phase
was employed to improve the local search ability.
Computational results show that DMS-PSO achieves a better
performance than some other compared algorithms. Han et al.
[10] proposed an improved artificial bee colony (IABC)
algorithm, which utilized discrete job permutations to represent
solutions and employed insert and swap operators to generate
new candidate solutions for the employed and onlooker bees.
The differential evolution algorithm is used to obtain solutions

978-1-4799-7492-4/15/$31.00 ©2015 IEEE

for the scout bees. Wang and Tang [11] designed a discrete
particle swarm optimization (DPSO) algorithm for the blocking
flow shop scheduling problem. To prevent the DPSO from
premature convergence, a self-adaptive diversity control
strategy is adopted.

Cuckoo search (CS) algorithm is a recently proposed
optimization approach developed by Yang and Deb [12],
which is inspired by the obligate brood parasitism of some
cuckoo species by laying their eggs in the nests of other host
birds. Preliminary studies show that CS outperforms some
existing algorithms such as genetic algorithm (GA) and particle
swarm optimization (PSO) [13]. Although the CS algorithm
has been applied to solve flow shop scheduling problem, these
research works focus on the permutation or hybrid flow shop
scheduling problems [14–16]. In [14], Marichelvam proposed
an improved hybrid cuckoo search (IHCS) algorithm for the
permutation flow shop scheduling problem. The IHCS also
used NEH heuristic to generate initial population. Results show
that the IHCS performs better than an ant colony optimization
meta-heuristic (MHD-ACS). In [15], Li and Yin presented a
hybrid CS (HCS) to solve the permutation flow shop
scheduling problem. To enhance the local exploitation ability
of CS, a fast local search operator is used. Simulation results
show the effectiveness of the HCS. In [16], Marichelvam et al.
proposed an improved CS (ICS) algorithm based on the NEH
heuristic to solve hybrid flow shop scheduling problem.

In this paper, we propose a modified CS (MCS) algorithm
to solve the flow shop scheduling problem with blocking. In
MCS, a smallest position value (SPV) rule is used to convert
continuous solutions into discrete job permutations. To
improve the quality of the population initialization, the NEH
method is used. Moreover, two local search operators: swap
and insertion, are employed to enhance the local search ability.

The rest of the paper is organized as follows. The problem
description of the blocking flow shop scheduling is presented
in Section 2. The standard CS algorithm is given in Section 3.
The modified CS algorithm is proposed in Section 4.
Experimental results are given in Section 5. Finally, the work
is concluded and summarized in Section 6.

II. FLOW SHOP SCHEDULING PROBLEM WITH BLOCKING
The flow shop scheduling problem with blocking can be

described as follows. There are a set of n jobs, J={1,2,…,n},
and a set of m machines, M={1,2,…,m}. Each job j (j J) will
be sequentially processed on machine 1, machine 2, and so on
until machine m. The processing time of job j (j J) on
machine k (k M) is denoted as p(j, k). The processing of each
job cannot be interrupted, and the setup time is included into
the processing time. At any time, each machine can process at
most one job, and each job can be processed on at most one
machine. The sequence in which the jobs are to be processed is
the same for each machine. There is no intermediate buffers
between any two consecutive machines, a job j cannot leave a
machine k until its next machine k+1 is available. That means
the job j is blocked on machine k if the next machine k+1 is not
free. The objective of the problem is to find a job sequence for
processing all jobs on all machines so as to minimize the
makespan [2, 8].

Let
1 2[, ,...,]nπ π π π= be a job permutation, where jπ is the

jth job of π . e(j, k) is the departure time of job jπ on machine
k. The e(j, k) is defined as follows [7].

 (1,0) 0e = (1)

 (1,) (1, 1) (1,), 1, 2,..., 1e k e k p k k m= − + = − (2)

 (,0) (1,1), 1, 2,...,e j e j j n= − = (3)

 { }(,) max (, 1) (,), (1, 1)e j k e j k p j k e j k= − + − + (4)

2,..., , 1, 2,..., 1j n k m= = −

 (,) (, 1) (,), 1, 2,...,e j m e j m p j m j n= − + = (5)

where e(j,0), j=1,2,…,n, represents the starting time of job
jπ on the first machine. In the above recursive equations, the

departure times of the first job on each machine are calculated
first, then the second job, until the last job [7]. The makespan

max ()C π of the job permutationπ is given by [2]:

 max () (,)C e n mπ = (6)
Thus, the objective of this paper is to find a job permutation

π to minimize the
max ()C π :

 { }maxmin ()C π (7)

III. CUCKOO SEARCH ALGORITHM
Cuckoo search (CS) is a new population-based stochastic

search algorithm. It is inspired by the obligate brood parasitic
behavior of some cuckoo species by laying their eggs in the
nests of other host birds. To simplify the CS algorithm, three
idealized rules are used as follows [12].

 Each cuckoo lays one egg at a time, and dumps it in a
randomly chosen nest;

 The best nests with high quality of eggs (solutions) will
carry over to the next generations;

 The number of available host nests is fixed, and a host can
discover an alien egg with a probability pa [0, 1]. In this
case, the host bird can either throw the egg away or
abandon the nest so as to build a completely new nest in a
new location.

Based on these three rules, the basic steps of the CS
algorithm can be summarized in Algorithm 1, where N is the
population size, f is the fitness function, pa [0,1] is the
probability of discovering an alien egg, t is the generation
index, and MaxGen is the maximum number of generations.

In the CS, new solutions Xi for the ith cuckoo are generated
by the following L vy flight [12].

(1) () ()i iX t X t Le vyα λ′+ = + ⊕ (8)

where 0α > is the step size which should be related to the
scales of the problem of interest. The product⊕ means entry-

wise multiplications. The L vy flight is a random walk, in
which the step length is determined by L vy distribution [12].

, (1 3)Le vy u t λ λ−′ = < ≤ (9)

It is known that the L vy distribution has an infinite variance
with an infinite mean. Therefore, the consecutive jumps of a
cuckoo form a random walk process which obeys a power-
length distribution with a heavy tail [13].

Fig. 1. An example for the SPV rule.

IV. THE PROPOSED MCS ALGORITHM FOR FLOW SHOP
SCHEDULING PROBLEM WITH BLOCKING

In this section, we present a modified CS (MCS) algorithm
for the flow shop scheduling problem with blocking. The
detailed descriptions of the MCS are given as follows.

A. Solution Representation
The original CS algorithm was usually used to solve

benchmark or real-world problems over continuous search

space. However, the flow shop scheduling problem is a discrete
problem. To handle the discrete variables, a smallest position
value (SPV) rule is utilized [17]. The SPV is a simple method,
which has been successfully applied to various production
scheduling problems. Another popular solution representation
method called largest position value (LPV) [2] is similar to the
SPV rule.

Let each index of the dimensions of a real number solution
represent a typical job from J={1,2,…,n}, and then n indexes
denote n different jobs. Assume that X={x1,x2,…,xn} is a real
number solution. By sorting the position values of X in
ascending order, a job permutation π is obtained. Fig. 1
illustrates a simple example of the SPV rule.

B. Population Initialization
Population initialization is an important step for stochastic

search algorithms. The Nawaz-Enscore-Ham (NEH) [18]
heuristic is usually used for flow shop scheduling problems [2,
8–11, 14–16]. The main idea of the NEH heuristic is that the
high processing time on all machines should be scheduled as
early in the sequence as possible. The NEH heuristic can be
described as follows [18].

 Step 1. Compute the total processing time of each job on
all m machines. Sort the jobs according to the total
processing time in non-increasing order. Then, we obtain
the sequence 1 2[, ,...,]nπ π π π= .

 Step 2. The first two jobs of π are taken and the two
partial possible sequences of these two jobs are evaluated.
Then, the better partial sequence is selected as the current
sequence.

 Step 3. Take the job jπ , j=3,4,…,n, and find the best
partial sequence by inserting it in all possible positions of
the partial sequence of jobs that have been already
scheduled. The best sequence would be selected for the
next iteration.

 Based on the above three steps, we can get a good job
permutation. The CS algorithm works on continuous search
space. So, the obtained job permutation should be converted to
a real number solution. Let 1 2[, ,...,]nπ π π π= be a job
permutation, and X={x1,x2,…,xn} be a real number solution in
the population. Then, we use a simple method to convert the
π to X as follows.

max min
max

() , 1, 2,...,
j

x x
x j x j n

nπ
−= ⋅ − = (10)

where n is the number of jobs, xmax =1, and xmin =-1. It can be
seen that x1 obtains the smallest value, while xn obtains the
largest value. According to the SPV rule, the dimension index
of the smallest value achieves the first job. Therefore, the job
permutation can be converted to a real number vector, and a
real number vector can also be converted to a job permutation.

The NEH heuristic can only generate one job permutation.
Based on this permutation, we can only get one solution. Thus,
we employ a modified NEH method to generate multiple initial
solutions [2]. In the new NEH method, the initial job sequence
in Step 1 is generated randomly, and then Step 2 and Step 3 are

 A real number solution x
Dimension 1 2 3 4 5

xj -1.4 3.3 1.5 -5.2 -1.8

 xj in ascending order
Dimension 4 5 1 3 2

xj -5.2 -1.8 -1.4 1.5 3.3

 A job permutation π

jπ 4 5 1 3 2

Algorithm 1: The Standard CS

Initialize a population of N host nests;
Calculate the fitness value of each initial solution;
while t<=MaxGen do
 Get a cuckoo (say i) randomly by L vy flights;
 Evaluate the fitness value of fi;
 Randomly choose a nest among N (say j);
 if fi is better than fj then
 Replace j with new solution;
 end if
 Abandon a fraction (pa) of worse nests, and build ones
 via L vy flights;
 Keep the best solutions;
 Rank the solutions and find the current best;
 t++;
end while

Administrator
Highlight

sequentially used to improve the seed sequence. Therefore, we
can obtain multiple similar job permutations with high quality.

The main steps of the modified NEH method for population
initialization can be described as follows [2].

 Step 1. Generate a job permutation π according to the
NEH heuristic. The rest N–1 job permutation are
generated by the modified NEH heuristic. Compute the
makespan of each job permutation.

 Step 2. According to Eq. 10, convert the all N job
permutation to N real number solutions. The fitness value
of each solution is equal to its makespan.

 Step 3. Find the best solution in the initial population and
set it as Xbest.

C. Local Search
It has been proved that utilizing local search is helpful for

solving flow shop scheduling problems [8]. In the past several
years, different kinds of local search operators have been
proposed, such as insert, interchange, inverse, and swap.
Previous studies pointed out that the insert operator is more
efficient than interchange [19]. In this paper, two local search
operators, insert and swap, are employed to enhance the
exploitation ability [20–21]. The main steps of the swap and
insert operators are described in Algorithms 2 and 3,
respectively.

D. Framework of MCS
The main steps of our MCS algorithm are described in

Algorithm 4, where rand(0,1) is a random number between 0
and 1, ps and pi is the probability rate of conducting swap and
insert operators, respectively.

V. SIMULATION RESULTS

A. Test Problems
In order to verify the performance of our proposed MCS

algorithm, experiments are conducted on Taillard's benchmark
set [22]. In this paper, there are 110 test instances (Ta001-
Ta110) with the size from 20 jobs and 5 machines (20×5) to
200 jobs and 20 machines (200×20).

The parameter settings are described as follows. For the
standard CS and MCS, the population size N and MaxGen are
set to 50 and 500, respectively. The parameter pa is set to 0.25.
For the probabilities of swap and insert, both ps and pi are set to
0.1. For each algorithm, each test instance is independently run
ten times, and the percentage relative difference (PRD) is
calculated as follows [2]:

100 ()PRD
Ron A

Ron

C C
C

× −= (11)

Algorithm 3: The Insert Operator

j=1;
while j<=n do
 Set *π π= ;
 Remove *

j
π from π and get a sub sequence *π ;

 Inert into all possible positions of the sub sequence, and
 calculate the makespan of all n new job permutations;
 Compare the n new job permutations with π , and the
 best one is selected as the newπ ;
 j++;
end while

Algorithm 4: The MCS Algorithm

Initialize population based on the modified NEH method;
while t<=MaxGen do
 Get a cuckoo (Xi) randomly by L vy flights;
 Apply the SPV rule to convert Xi to a job permutation;
 Calculate the makespan of the new job permutation;
 Randomly choose a nest among N (Xj);
 if fi is better than fj then
 Replace Xj with Xi;
 end if
 Abandon a fraction (pa) of worse nests, and build ones
 via L vy flights;
 Apply the SPV rule to convert the new solution to job
 permutations, and calculate their makespan;
 Update the best solutions;
 for i=1; i<=N; i++ do
 if rand(0,1)<=ps then
 Execute the swap operator (Algorithm 2);
 end if
 end for
 for i=1; i<=N; i++ do
 if rand(0,1)<=pi then
 Execute the insert operator (Algorithm3);
 end if
 end for
 Update the best solutions;
 t++;
end while

Algorithm 2: The Swap Operator

Randomly select a position jπ from a job π ;
l=1;
while l<=n do
 if i j then
 Set *π π= ;
 Swap *

j
π with *

l
π ;

 Select the better one between π and *π as the newπ ;
 end if
 l++;
end while

where CRon is the makespan provided by Ronconi [7], and CA is
the makespan achieved by our MCS algorithm or other
compared algorithms. The PRD can measure the performance
of an algorithm. A larger PRD means that the algorithm is
better. For each kind of problem size, there are ten different
test instances. The average percentage relative difference
(APRD), maximum PRD (MaxPRD), and minimum PRD
(MinPRD) are reported.

All algorithms are encoded in VC++ 6.0 and independently
run on an Intel Core i7-4510U CPU 2.60 GHz with 8.0 GB
Memory in the Windows 7 Operating System.

B. Comparison between CS and MCS
In this section, we compare the performance of standard CS

and the proposed MCS on the test bed. Table I presents the
computational results achieved by CS and MCS. As seen, MCS
achieves much better results than the standard CS in terms of
the solution accuracy. For all test instances, the PRD values

obtained by the standard CS is negative. That is to say the
performance of the standard CS is worse than Ronconi's
branch-and-bound approach [7]. However, MCS needs a
higher computational time than the standard CS. Especially for
large size test instances, the running of MCS is very time
consuming. Fig. 2 lists the convergence plots of CS and MCS
on two test instances. It is obvious that MCS converges faster
than CS during the search process.

From the above analysis, though MCS achieves better
solutions than the standard CS, CS cost less computational
time. The main reason is that both of the two algorithms use
the same MaxGen as the stopping criterion. To further compare
the performance of CS and MCS, the running time is used as
the stopping criterion. In the experiment, the standard CS is
given more computational time than MCS. This is helpful to
investigate the effectiveness of the employed local search and
NEH based population initialization in MCS.

TABLE I. RESULTS ACHIEVED BY CS AND MCS

n×m
Standard CS MCS

APRD MaxPRD MinPRD Time (s) APRD MaxPRD MinPRD Time (s)

20×5 –12.61 –10.78 –13.72 0.28 0.34 0.37 0.078 1.61

20×10 –8.6 –7.45 –9.74 0.3 2.39 3.39 1.72 1.97

20×20 –4.53 –3.47 –5.48 0.32 3.39 3.93 2.98 2.78

50×5 –17.22 –16.34 –17.82 0.71 3.05 3.54 2.63 11.65

50×10 –11.02 –10.2 –11.73 0.75 4.52 5.04 4.12 17.4

50×20 –7.94 –7.36 –8.47 0.82 4.72 5.12 4.36 29.65

100×5 –22.29 –21.59 –22.79 1.58 1.02 1.33 0.61 64.58

100×10 –12.92 –12.39 –13.32 1.68 4.38 4.67 4.01 103.9

100×20 –9.01 –8.66 –9.31 1.82 3.98 4.07 3.54 213.7

200×10 –15.22 –14.89 –15.5 4.23 2.14 2.22 2.01 771.2

200×20 –9.71 –9.29 –10.02 4.51 2.89 2.95 2.82 1860.8

Average –11.92 –11.13 –12.54 1.55 2.98 3.39 2.63 279.93

TABLE II. RESULTS ACHIEVED BY CS AND MCS WHEN CS COST MORE COMPUTATIONAL TIME

n×m
Standard CS MCS

APRD Time (s) APRD Time (s)

20×5 –9.49 2.0 0.34 1.61

20×10 –5.81 2.0 2.39 1.97

20×20 –2.08 3.0 3.39 2.78

50×5 –14.86 12.0 3.05 11.65

50×10 –8.89 18.0 4.52 17.4

50×20 –5.18 30.0 4.72 29.65

Average –7.72 11.17 3.07 10.84

 (a) Ta001 (b) Ta011

Fig. 2. The convergence characteristics between CS and MCS on Ta001 and Ta011.

TABLE III. RESULTS ACHIEVED BY TS, TS+M, HDE, DMS-PSO, AND MCS

n×m
TS TS+M HDE DMS-PSO MCS

APRD APRD APRD APRD APRD

20×5 –1.64 –0.34 0.26 0.30 0.34

20×10 1.45 1.76 2.30 2.32 2.39

20×20 2.88 2.94 3.25 3.26 3.39

50×5 –0.55 0.55 3.09 2.78 3.05

50×10 1.98 3.52 4.57 4.09 4.52

50×20 3.68 4.26 5.00 4.91 4.72

100×5 –3.03 –2.62 –0.32 1.01 1.02

100×10 1.71 2.66 3.40 4.43 4.38

100×20 2.01 3.03 3.05 4.72 3.98

200×10 –0.60 0.58 0.33 1.93 2.14

200×20 1.24 2.31 1.36 2.94 2.89

Average 0.83 1.70 2.39 2.97 2.98

Table II presents the results achieved by standard CS and
MCS when we assign the standard CS slightly more
computational time than MCS. As shown, even though the
standard CS runs for more time than MCS, it still achieves
negative APRD values on all group instances. Compared to the
results shown in Table 1, CS with more computational time can
find better solutions. However, MCS is still much better than
the standard CS. It also demonstrates that the employed local
search and NEH based population strategies are helpful for
MCS to solve flow shop scheduling problem with blocking.

C. Comparison of MCS, TS/TS+M, HDE, and DMS-PSO
This section presents a comparison of MCS with other

existing meta-heuristics. The involved algorithms are listed as
follows.

 TS and TS+M [3].

 Hybrid DE-based algorithm (HDE) [23].

 DMS-PSO [2].

 The proposed MCS.

Table III lists the results achieved by TS, TS+M, HDE,
DMS-PSO, and MCS. The best results for each problem size
are shown in bold. Results of TS, TS+M, HDE, and DMS-PSO
are taken from Table I in the literature [2]. The parameter
setting of these algorithms can be found in [2].

From Table III, it can be seen that the proposed MCS
achieves best performance in terms of the overall solution
quality, because it obtains the largest overall APRD (2.98%),

which is slightly better than DMS-PSO (2.97%), and much
better than TS (0.83%), TS+M (1.70%), and HDE (2.39%).
MCS outperforms HDE on 8 out of 11 group instances.
Compared to DMS-PSO, MCS performs better on 7 group
instances, while DMS-PSO is better than MCS on the rest of 4
group instances. MCS achieves much larger APRD than both
TS and TS+M on all 11 group instances.

 Although MCS achieves better results than TS, TS+M,
HDE, and DMS-PSO, it cost much more computational time.
For HDE and DMS-PSO, they use the maximum
computational time (Tmax=5mn milliseconds) as the stopping
criterion. In the current version of MCS, the swap and insert
operators are conducted on all individuals with a probability
0.1. This is the main reason that MCS has a high computational
cost for 300 iterations (MaxGen=300). To overcome this
problem, the swap and insert operators can be conducted on the
global best individual. This will save much computational time.

VI. CONCLUSIONS
In this paper, we propose a modified CS (MCS) algorithm

to solve the flow shop scheduling problem with blocking. The
MCS algorithm employs three strategies: the SPV rule, a
variant of NEH-based population initialization, and two local
search operators. To verify the performance of the proposed
MCS, experiments are conducted on Taillard's benchmark set.
Results show that MCS performs better than the standard CS,
TS, TS+M, HDE, and DMS-PSO in terms of the overall
solution quality.

Compared to the standard CS, the MCS achieves much
better solutions, but its computational time is higher under the
same iterations. When the standard CS runs more time than
MCS, it cannot obtain better results than MCS. This confirms
the effectiveness of the employed strategies in MCS.

As a main drawback, the proposed MCS is time consuming.
The primary reason is that the swap and insert operators are
conducted on all individuals with a probability rate. To
overcome this problem, the swap and insert operators will be
conducted on the global best individual to save computational
time. Moreover, the opposition-based learning [24–26] may be
helpful to accelerate the MCS. These will be investigated in
the future work.

ACKNOWLEDGMENT
This work is supported by the Humanity and Social Science

Foundation of Ministry of Education of China (No.
13YJCZH174), the National Natural Science Foundation of
China (Nos. 61305150 and 61261039), the Science and
Technology Plan Project of Jiangxi Provincial Education
Department (Nos. GJJ14747 and GJJ13762), and the Natural
Science Foundation of Jiangxi Province (No.
20142BAB217020).

REFERENCES
[1] J. Grabowski and J. Pempera, “Sequencing of jobs in some production

system,” European Journal of Operational Research, vol. 125, pp. 535-
550, 2000.

[2] J.J. Liang, Q.K. Pan, T.J. Chen, and L. Wang, “Solving the blocking
flow shop scheduling problem by a dynamic multi-swarm particle
swarm optimizer,” The International Journal of Advanced
Manufacturing Technology, vol. 55, pp. 755-762, 2011.

[3] J. Grabowski and J. Pempera, “The permutation flow shop problem with
blocking. A tabu search approach,” OMEGA, The international Journal
of Management Science, vol. 35, pp. 302–311, 2007.

[4] N.G. Hall and C. Sriskandarajah, “A survey of machine scheduling
problems with blocking and no-wait in process,” Operational Research,
vol. 44, pp. 510–525, 1996.

[5] S.T. McCormich, M.T. Pinedo, and S. Shenker, B. Wolf, “Sequencing in
an assembly line with blocking to minimize cycle time,” Operational
Research, vol. 37, pp. 925–936, 1989.

[6] I.N.K. Abadi, N.G. Hall, and C. Sriskandarajh, “Minimizing cycle time
in a blocking flowshop,” Operational Research, vol. 48, pp. 77–180,
2000.

[7] D.P. Ronconi, “A branch-and-bound algorithm to minimize the
makespan in a flowshop problem with blocking,” Annals of Operations
Research, vol. 138, no. 1, pp. 53–65, 2005.

[8] L. Wang, Q.K. Pan, P.N. Suganthan, W.H. Wang, and Y.M. Wang, “A
novel hybrid discrete differential evolution algorithm for blocking flow
shop scheduling problems,” Computers & OperationsResearch, vol. 37,
pp. 509–520, 2010.

[9] L. Wang, Q.K. Pan, and M.F. Tasgetiren, “Minimizing the total flow
time in a flow shop with blocking by using hybrid harmony search
algorithms,” Expert Systems with Applications, vol. 37, no. 12, pp.
7929–7936, 2010.

[10] Y.Y. Han, Q.K. Pan, J.Q. Li, and H.Y. Sang, “An improved artificial
bee colony algorithm for the blocking flowshop scheduling problem,”
The International Journal of Advanced Manufacturing Technology, vol.
60, pp. 1149–1159, 2012.

[11] X.P. Wang and L.X. Tang, “A discrete particle swarm optimization
algorithm with self-adaptive diversity control for the permutation
flowshop problem with blocking,” Applied Soft Computing, vol. 12, pp.
652–662, 2012.

[12] X.S. Yang and S. Deb, “Cuckoo Search Via Lévy Flights,” Proceeding
of World Congress on Nature & Biologically Inspired Computing
(NaBIC 2009), December 2009, pp. 210–214.

[13] X.S. Yang and S. Deb, “Engineering Optimisation by Cuckoo Search,”
International Journal of Mathematical Modelling and Numerical
Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[14] M.K. Marichelvam, “An improved hybrid Cuckoo Search (IHCS)
metaheuristics algorithm for permutation flow shop scheduling
problems,” International Journal of Bio-Inspired Computation, vol. 4, no.
4, pp. 200–205, 2012.

[15] X.T Li and M.H Yin, “A hybrid cuckoo search via Lévy flights for the
permutation flow shop scheduling problem,” International Journal of
Production Research, vol. 51, no. 16, pp. 4732–4754, 2013.

[16] M.K. Marichelvam, T. Prabaharan, and X.S. Yang, “Improved cuckoo
search algorithm for hybrid flow shop scheduling problems to minimize
makespan,” Applied Soft Computing, vol. 19, pp.93–101, 2014.

[17] M.F. Tasgetiren, Y.C. Liang, M. Sevkli, and G. Gencyilmaz, “Particle
swarm optimization and differential evolution for the single machine
total weighted tardiness problem,” International Journal of Production
Research, vol. 44, no. 22, pp. 4737–4754, 2006.

[18] M. Nawaz, E.E.J. Enscore, and I. Ham, “A heuristic algorithm for the
m-machine, n-job flow shop sequencing problem,” OMEGA, The
international Journal of Management Science, vol. 11, no. 1, pp. 91–95,
1983.

[19] E. Nowicki and C. Smutnicki, “A fast tabu search algorithm for the
permutation flowshop problem,” European Journal of Operational
Research, vol. 91, pp. 160–75, 1996.

[20] R.Ruben and T. Stutzle, “An Iterated Greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and
weighted tardiness objectives,” European Journal of Operational
Research, vol. 187, pp. 1143–1159, 2008.

[21] Q.K. Pan, M. F. Tasgetiren, and Y. C. Liang, “A discrete differential
evolution algorithm for the permutation flowshop scheduling

problem, Computers and Industrial Engineering,” vol. 55, pp. 795–816,
2008.

[22] E. Taillard, “Some efficient heuristic methods for the flow shop
sequencing problem,” European Journal of Operational Research, vol.
47, no. 1, pp. 65–74, 1990.

[23] B. Qian, L. Wang, D.X. Huang, W.L. Wang, and X. Wang, “An
effective hybrid DE-based algorithm for multi-objective flow shop
scheduling with limited buffers,” Computers & Operations Research,
vol. 36, no. 1, pp. 209–233, 2009.

[24] S. Rahnamayan, H.R. Tizhoosh, and M.A.Salama, “Opposition-based
differential evolution’, IEEE Transactions on Evolutionary Computation,
vol. 12, no. 1, pp. 64–79, 2008.

[25] H. Wang, Z.J. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca,
“Enhancing particle swarm optimization using generalized opposition-
based learning,” Information Sciences, vol. 181, no. 20, pp. 4699–4714,
2011.

[26] H. Wang, Z.J. Wu, S. Rahnamayan, “Enhanced opposition-based
differential evolution for solving high-dimensional continuous
optimization problems,” Soft Computing, vol. 15, no. 11, pp. 2127–2140,
2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

		2015-09-21T11:12:56-0400
	Certified PDF 2 Signature

